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Abstract 

The flow of e lectrons through a neut ra l  scat ter ing gas i n  a thermionic diode is  analyzed f o r  

The corresponding Boltzmann equation i s  t rans-  

Density and poten t ia l  var ia t ions together with sa tura  ion 

electron mean f r e e  paths comparable t o  the  electrode separation. 
r i g i d  sphere sca t te r ing  cross sect ion i s  assumed. 
formed t o  a pure i n t e g r a l  equation, and self-consis tent-f ie ld  solut ions of t h i s  equation with 
Poisson's equation have been computed. 
portions of current voltage curves a r e  presented. 

A perfect  Lorentz gas with a 

j*T 
Introduction 

The analysis  of t ransport  e f f e c t s  i n  a thermionic diode is  complicated by t h e  strong inf lu-  
ence on t h e  e n t i r e  system of phenomena occurring i n  t h e  immediate v ic in i ty  of t h e  electrodes. 
For l a r g e  spacings t h i s  i s  seen i n  t h e  a r t i f i c i a l  separation of t h e  interelectrode space i n t o  
co l l i s ion less  sheaths and a collision-dominated plasma. For close spacing co l l i s ions  are f r e -  
quently ignored altogether.  
t ransport  e f f e c t s  over distances of a few mean f ree  paths with results as accurate as t h e  know- 
ledge of t h e  co l l i s ion  cross sections involved. 

The method employed i n  t h e  present analysis  can be used t o  calculate  

The use of i n t e g r a l  equation formulations i n  t h e  solut ion of Boltzmann's equation is  not 
new. 
earized Bultzmann equation i n  shear flow. By introducing a var iable  transformation t o  dea l  with 
t h e  potent ia l , f f ie ld ,  W i l l i s '  method has been adapted i n  t h i s  work t o  t r e a t  t h e  flow of electrons.  
Solutions.have been obtained f o r  t h e  flow from a hot emitter t o  a cold co l lec tor  and include t h e  
e f f e c t s  of space charge and electron-neutral  a tom col l is ions.  

It has been suggested by Grad1t2 and used by W i l l i s 3  t o  solve t h e  Krook model of t h e  l i n -  

General Analysis 

For e lectrode separations t h a t  are not too large,  the  l o s s  of energy by electrons due t o  
In addition, all i n e l a s t i c  co l l i s ions  are a l s o  

!he Boltmannls equation f o r ' t h e  one-dimensional flow of a perfect  Lorentz gas i s  
e l a s t i c  co l l i s ions  with atoms i s  negligible. 
neglected. 
w r i t t e n 4 ~ 5  

\ 

The densi ty  

e represent, respectively; distance, velocity,  and polar angle i n  veloci ty  
e lectron d is t r ibu t ion  function; V t h e  potent ia l ;  N t h e  atom density; and u 
cross section. The bars a r e  used t o  dis t inguish dimensiond qwintit ies.  

and current,  respectively,  are  given by 

Equation (1) with ( 2 )  is  t o  be solved simultaneously with Poisson's equation 
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Boundary conditions are 

- 
x = o  COS e > o 

( 5 )  

J - - 
x = L  COS e < o f = O  

V ( O )  = o ~ ' ( 0 )  = constant 

where To and To a re  t h e  density and - temperature of t h e  emitted electrons and L i s  t h e  elec- 
t rode  separation. 
e lectrons a t  e i ther  electrode. 

The conditions on f a r e  obtained by assuming t h a t  there  i s  no re f lec t ion  of 

On assuming isotropic  sca t te r ing  and introducing dimensionless variables,  Eqs. (1) t o  (5) 
become 

x = l  p < o  f = O  

q(0 )  = o ~ ' ( 0 )  = constant 

where 

and t h e  mean f ree  path h i s  given by 

h = (4xNo)'' 

I n  order to  transform Eq. (6)  t o  a pure i n t e g r a l  equation, transform variables  from (X,v,p) 
t o  (x,w,u), where 
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w = vz - cp(x) 

I n  addition, denote f by f' f o r  p 2 0, and define 

+ 2 e-w$? 
f- = p 

Then Eqs. (6)  t o  (8) become 

with 

a ( x )  = +qq u + c p x  

P W  

The boundary conditions of Eq. (10) become 

x = o  @ + = 1  

x = l  J r - = o  

cp(0) = o cp'(0) = constant 

Equation (14) is formally integrated t o  give 

+ + 
I n  general, K i s  a function of w + cp(x). The quantit ies A-(w,u) and x i  are t o  be determined 
from t h e  boundary conditions and such other  conditions as par t icu lar  potent ia l  configurations may 
impose on t h e  d is t r ibu t ion  function. 

I n  order t o  solve f o r  S(x,w), Eq. (20) i s  subst i tuted i n t o  Eq. (18). After rearranging, a 
In many respects t h e  theory is  similar t o  t h a t  l i n e a r  i n t e g r a l  equation is  obtained i n  

of rad ia t ive  transfer.6 
S(x,w). 

These equations a re  now applied t o  a par t icu lar  case. 

Rigid Sphere Scat ter ing With a Monotonic Increasing Potent ia l  

For t h i s  case K is  a constant and cp(x) 2 0. The complete conditions on $+ a r e  
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f o r  u 2  0,  

for u < 0, 

x = + J I + =  JI- 1 x = l  J I - = o  

J + Cp(+) = 0 

The point 4 i s  the  turning point for electrons of "energy" u i n  the  e l e c t r i c  f i e ld .  

Applying conditions ( 2 1 )  and ( 2 2 )  t o  Eq. (20)  gives 

7 for u 2 0 ,  

f o r  u < 0,  

After subst i tut ion of Eqs. (23)  and ( 2 4 )  i n to  Eq. (18) and interchanging the  order of t he  
x and u integrations, t he  following in t eg ra l  equation for S(x,w) i s  obtained: 

where 
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and 

-cp(x') x' < x 

-cp(x) x' > x 
b = {  

Equation (25)  can be solved by i t e r a t i o n  i n  t h e  form 

Once S(x,w) has 

and t h e  current, 

Note t h a t  w 2 0 

S(O)(x,w) = F(x,w) 

S(")(x,w) = F(x,w) + 

been found, t h e  density i s  given by Eq. (15) as 

evaluated at t h e  emitter, by Eqs. (16), (23) , (24), and (26) as 

J = 1 - K lrn e-w 4' S(X',w)F(x',w)dx' aw 

as each p a r t i c l e ' s  t o t a l  energy i s  conserved. 

Results 

Equation (25) with (30) has been solved self-consistently with Eq. (9) on t h e  E M  7094 com- 
puter. The equations were solved f o r  L/h = 0, 0.5, 1, 2, and 5 and C [Eq. (9) l  = 50. An 
emi t te r  temperature of 1900~ K, a spacing of lop, and an emission of 10 amplcm2 would give a c 
of about 50. Typical density and potent ia l  curves axe shown i n  Figs. 1 and 2, while current 
vol tage curves a r e  presented i n  Fig. 3. 

Examination of t h e  inhomogeneous function F(x,w) i n  Eq. (25) shows t h a t  it has an i n f i n i t e  
s lope at x = 0. This shows up i n  t h e  steep slopes of t h e  density curves (Fig. 1) at x = 0. 
More accurate computation would show t h a t  these slopes are actual ly  i n f i n i t e .  

The r e s u l t s  shown i n  Fig. 3 agree qui te  closely with an independent Monte Carlo calculat ion 
(presented i n  t h e  paper by C. M. Goldstein). 

Conclusions 

The method of solut ion of t h e  Boltzmann equation presented i n  t h i s  paper has been shown t o  
be an accurate and qui te  feas ib le  means of analyzing t ransport  phenomena over distances of a few 
mean f r e e  paths. 
t h e  boundary conditions, t o  t r e a t  t h e  t rans i t ion  region between an electrode and a plasma. 

The same method can be used t o  handle ion t ransport  phenomena and, by modifying 
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Fig. 1. - Density as function of distance. C - 50; $(O) - 0. 
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Fig. 3. - Current as function of anode voltage. C - 50. 
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